This article is more than one year old. Older articles may contain outdated content. Check that the information in the page has not become incorrect since its publication.

使用 CSI 和 Kubernetes 实现卷的动态扩容

作者:Orain Xiong(联合创始人, WoquTech)

Kubernetes 本身有一个非常强大的存储子系统,涵盖了相当广泛的用例。而当我们计划使用 Kubernetes 构建产品级关系型数据库平台时,我们面临一个巨大的挑战:提供存储。本文介绍了如何扩展最新的 Container Storage Interface 0.2.0 和与 Kubernetes 集成,并演示了卷动态扩容的基本方面。

介绍

当我们专注于客户时,尤其是在金融领域,采用容器编排技术的情况大大增加。

他们期待着能用开源解决方案重新设计已经存在的整体应用程序,这些应用程序已经在虚拟化基础架构或裸机上运行了几年。

考虑到可扩展性和技术成熟程度,Kubernetes 和 Docker 排在我们选择列表的首位。但是将整体应用程序迁移到类似于 Kubernetes 之类的分布式容器编排平台上很具有挑战性,其中关系数据库对于迁移来说至关重要。

关于关系数据库,我们应该注意存储。Kubernetes 本身内部有一个非常强大的存储子系统。它非常有用,涵盖了相当广泛的用例。当我们计划在生产环境中使用 Kubernetes 运行关系型数据库时,我们面临一个巨大挑战:提供存储。目前,仍有一些基本功能尚未实现。特别是,卷的动态扩容。这听起来很无聊,但在除创建,删除,安装和卸载之类的操作外,它是非常必要的。

目前,扩展卷仅适用于这些存储供应商:

  • gcePersistentDisk
  • awsElasticBlockStore
  • OpenStack Cinder
  • glusterfs
  • rbd

为了启用此功能,我们应该将特性开关 ExpandPersistentVolumes 设置为 true 并打开 PersistentVolumeClaimResize 准入插件。 一旦启用了 PersistentVolumeClaimResize,则其对应的 allowVolumeExpansion 字段设置为 true 的存储类将允许调整大小。

不幸的是,即使基础存储提供者具有此功能,也无法通过容器存储接口(CSI)和 Kubernetes 动态扩展卷。

本文将给出 CSI 的简化视图,然后逐步介绍如何在现有 CSI 和 Kubernetes 上引入新的扩展卷功能。最后,本文将演示如何动态扩展卷容量。

容器存储接口(CSI)

为了更好地了解我们将要做什么,我们首先需要知道什么是容器存储接口。当前,Kubernetes 中已经存在的存储子系统仍然存在一些问题。 存储驱动程序代码在 Kubernetes 核心存储库中维护,这很难测试。 但是除此之外,Kubernetes 还需要授予存储供应商许可,以将代码签入 Kubernetes 核心存储库。 理想情况下,这些应在外部实施。

CSI 旨在定义行业标准,该标准将使支持 CSI 的存储提供商能够在支持 CSI 的容器编排系统中使用。

该图描述了一种与 CSI 集成的高级 Kubernetes 原型:

csi diagram

  • 引入了三个新的外部组件以解耦 Kubernetes 和存储提供程序逻辑
  • 蓝色箭头表示针对 API 服务器进行调用的常规方法
  • 红色箭头显示 gRPC 以针对 Volume Driver 进行调用

更多详细信息,请访问:https://github.com/container-storage-interface/spec/blob/master/spec.md

扩展 CSI 和 Kubernetes

为了实现在 Kubernetes 上扩展卷的功能,我们应该扩展几个组件,包括 CSI 规范,“in-tree” 卷插件,external-provisioner 和 external-attacher。

扩展CSI规范

最新的 CSI 0.2.0 仍未定义扩展卷的功能。应该引入新的3个 RPC,包括 RequiresFSResizeControllerResizeVolumeNodeResizeVolume

service Controller {
 rpc CreateVolume (CreateVolumeRequest)
   returns (CreateVolumeResponse) {}
……
 rpc RequiresFSResize (RequiresFSResizeRequest)
   returns (RequiresFSResizeResponse) {}
 rpc ControllerResizeVolume (ControllerResizeVolumeRequest)
   returns (ControllerResizeVolumeResponse) {}
}

service Node {
 rpc NodeStageVolume (NodeStageVolumeRequest)
   returns (NodeStageVolumeResponse) {}
……
 rpc NodeResizeVolume (NodeResizeVolumeRequest)
   returns (NodeResizeVolumeResponse) {}
}

扩展 “In-Tree” 卷插件

除了扩展的 CSI 规范之外,Kubernetes 中的 csiPlugin 接口还应该实现 expandablePlugincsiPlugin 接口将扩展代表 ExpanderControllerPersistentVolumeClaim

type ExpandableVolumePlugin interface {
VolumePlugin
ExpandVolumeDevice(spec Spec, newSize resource.Quantity, oldSize resource.Quantity) (resource.Quantity, error)
RequiresFSResize() bool
}

实现卷驱动程序

最后,为了抽象化实现的复杂性,我们应该将单独的存储提供程序管理逻辑硬编码为以下功能,这些功能在 CSI 规范中已明确定义:

  • CreateVolume
  • DeleteVolume
  • ControllerPublishVolume
  • ControllerUnpublishVolume
  • ValidateVolumeCapabilities
  • ListVolumes
  • GetCapacity
  • ControllerGetCapabilities
  • RequiresFSResize
  • ControllerResizeVolume

展示

让我们以具体的用户案例来演示此功能。

  • 为 CSI 存储供应商创建存储类
allowVolumeExpansion: true
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: csi-qcfs
parameters:
  csiProvisionerSecretName: orain-test
  csiProvisionerSecretNamespace: default
provisioner: csi-qcfsplugin
reclaimPolicy: Delete
volumeBindingMode: Immediate
  • 在 Kubernetes 集群上部署包括存储供应商 csi-qcfsplugin 在内的 CSI 卷驱动

  • 创建 PVC qcfs-pvc,它将由存储类 csi-qcfs 动态配置

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: qcfs-pvc
  namespace: default
....
spec:
  accessModes:
  - ReadWriteOnce
  resources:
    requests:
      storage: 300Gi
  storageClassName: csi-qcfs
  • 创建 MySQL 5.7 实例以使用 PVC qcfs-pvc
  • 为了反映完全相同的生产级别方案,实际上有两种不同类型的工作负载,包括:      * 批量插入使 MySQL 消耗更多的文件系统容量      * 浪涌查询请求
  • 通过编辑 pvc qcfs-pvc 配置动态扩展卷容量

Prometheus 和 Grafana 的集成使我们可以可视化相应的关键指标。

prometheus grafana

我们注意到中间的读数显示在批量插入期间 MySQL 数据文件的大小缓慢增加。 同时,底部读数显示文件系统在大约20分钟内扩展了两次,从 300 GiB 扩展到 400 GiB,然后扩展到 500 GiB。 同时,上半部分显示,扩展卷的整个过程立即完成,几乎不会影响 MySQL QPS。

结论

不管运行什么基础结构应用程序,数据库始终是关键资源。拥有更高级的存储子系统以完全支持数据库需求至关重要。这将有助于推动云原生技术的更广泛采用。